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DIRECTIONS TO CANDIDATES
o ‘Attempt ALL questions.
= ALL giestions are of equal value,

°© Aﬂ?&gssary working should be showy in eve i
careless o badly artaiped inh TY question. Marks may be deducted for

* -Bodrd-approved cslcuIa’tprs may be used.
o ‘Start ench question on's mew page. Number each question clearly,
= “Label éach page with yourname.

> /A table of Standard Integralsis attached.
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(d)

Marks

Let A(-5,12) and B(4,9) be two points in the number plane. Find the

coordinates of P which divides the interval AB extemnally in the ratio 5 : 2. 2
Find the size of the acute angle between the lines Yy=2x+3 and y=4x +1.
(Answer to the nearest minute). 2
Express f(x) = x3+3x2-10x-24 asa product of three linear factors. 3
? d
X
Evaluate 3
V9-x2
0
Two points A and B are placed on acircle and AC is a diameter. AE is 2
perpendicular to the tangent at B.
(i}  Draw the diagram on your paper.
- (i) Prove AB bisects £ CAE.
. Start a new booklet
. 4 3
Solve for x : X2 X
For y = —3sin-! %
(1)  State the domain and range.
(ii) Sketch the curve. 3
3
Using the substitution u =9 - x2, evaluate f xV9-x2dx - 3
g "
T,
The area bounded by the curve y = sin x between x =0 and x = 5 s
3

rotated about the x-axis. Find the volume of the solid of revolution.



Marks

Q3. Start a new booklet

(a) Express 3cos x + 4sin x in the form Acos (x-a) where A > 0. Hence, or
otherwise, solve 3cos x + 4sin x =~3 for 0<x <360"

’

(b) . Inaco-educational class there are 4 girls and 7 boys. Their classroom has 5 rows of 5 desks
neatly arranged. Each student occupies a desk with a chair. Find the number of seating

arrangements possible if, -
() students can sit anywhere,
(i)  all the girls want to occupy the first row.

(ii) ~ Two particular girls and three particular boys fill the back row
seated alternately. 4

(e

The diagram shows the graphs of
x-2

y=e"" and y=x with points of
intersection at 4 and B.

T g

(i) How many roots has the equation e*? - x = ¢?

1 Iaklﬂg x=33 as the ﬁ-lst approxﬂﬂatloﬂ, use one apphCanO“
OfIQCWtOD s !V{Cthod to ﬁnd a bettel appl Ox1mation to the
Z"Coordlnﬂte OfB. i

Marks
Q4. Start a new booklet
. 4X
() Find x and y if 35 =8 and 2% = 128. 3
4

(b) If x=2-cost and y=2t+2sint,

. d d
(i) find d—’: and 3%

\ t
(i) Hence or otherwise, find % interms of 3.

(c) A particle is oscillating in simple hanmonic motien s:;h thatits displacement
i X .
x metres from the origin is given by-the equation ok -9x -where

t is time in seconds.

(i) Showthat x=a co; (3t+0) is a solusion of motion for this particle
(a and o are constants). ’ ’
When t=0, v=3m/sand x =5 m. Show that.the zmplitide of the

oscillation is V26 metres.

(iiiy ‘What is the maximum speed of the particle?

(i)



Marks

Marks g
5. Start a new booklet f Q6. (continued).....
. | () A ballis thrown with a velocity of 30¥3 m/s-at an angle of 60° {o the 6
{a) o, B, are the roots of the equation 2x3 +3x2-4=0 3 [ horizontal.

i
Find . ; ()  Assuming negligible air resistance and letting g = 10 ms*2; derive the
) a+B+y ‘ equations of motion.
(i) apy ‘ o . )

1i)  Find the time of flight and the range.

(i) &2+ p2 42 ‘ ) O g &

(iii)  If the ball had been thrown with velocity 3043 /s at an angle of 30" 10

a hill which is itself inclined at 30" 1o the horizontal {see diagram),
determine the time of flight.

(b)  For the function y = x2 - 2x + 1, find the largest possible domain such that
this function has an inverse. Find the equation of this inverse and state its
range. : 3

(c) For the parabola x2 = 12y, find ’ 5

(i)  the equation of the tangent at the point P (6p, 3p2) on the parabola.

(if)  the coordinates of the point T where the tangent meets the X axis.

(i) Show that N, the midpoint of PT, has coordinates (222. %Lz)

(iv) Find the equation of the locus of N. i

Start a new booklet Q 7. Start a new booklet
(a) Prove by mathematical induction that for all valties of n o

. lim sin3x
(a) Find x>0 “Bx » 2 ‘
. ) , 1 2 3 n (n+D)! -1
(b) The daily growth of a colony of insects is 10% of the excess of the 4 JAEg gt @+ T T{nFD!

population over 1.2 x 106,

ie g =01(N-12x 106 where n is a positive integer.

ex - g% h ) ints
as no stationary. points.
eX + g% P

Initially, the population is 2.7 x 106, (b) (i) Show thary=

(i)  Determine the population after 3% days. ) .
(i) If 2 scientist checks the population each day, which is the first day on {ii) Prove that the lines y = £1 are asymptotes.
which she should notice that the original population has tripled? (iif) Sketch the curve,
(iv) Ifkis a positive constant, find the area in the first quadrant enclosed by

the above curve and the three lines y=1, x.=0and x =k

(v) Prove that for all values of k, this area is always less than logs 2.
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